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Abstract

Similarities between the pathologic progression of cancer and the physiologic process of placentation (eg,
proliferation, invasion, and local/systemic tolerance) have been recognized for many years. Sex hormones
such as human chorionic gonadotropin, estrogens, progesterone, and others contribute to induction of
immunologic tolerance at the beginning of gestation. Sex hormones have been shown to play contributory
roles in the growth of cancers such as breast cancer, prostrate cancer, endometrial cancer, and ovarian
cancer, but their involvement as putative mediators of the immunologic escape of cancer is still being
elucidated. Herein, we compare the emerging mechanism by which sex hormones modulate systemic
immunity in pregnancy and their potentially similar role in cancer. To do this, we conducted a PubMed
search using combinations of the following keywords: “immune regulation,” “sex hormones,” “pregnancy,”
“melanoma,” and “cancer.” We did not limit our search to specific publication dates. Mimicking the
maternal immune response to pregnancy, especially in late gestation, might aid in design of better ther-
apies to reconstitute endogenous antitumor immunity and improve survival.
ª 2014 Mayo Foundation for Medical Education and Research n Mayo Clin Proc. 2014;89(4):520-535
I n 1948, Beard and Krebs acknowledged a
striking similarity between a trophoblast
and a tumor, publishing their observation

titled “The Unitarian or Trophoblastic Thesis
of Cancer.”1-3 Since then, these similarities
have been extensively studied; many shared
pathways and immunologic mediators have
been identified.4,5 The purpose of this review
was to take an in-depth look at existing
research describing the role of sex hormones
in the potentially parallel settings of reproduc-
tive and tumor immunology, with a focus on
metastatic melanoma. Although imperfectly
understood, sex hormones are important regu-
lators of the immune system in both pregnancy
and cancer.6,7 It is clear that they are involved
in regulation and modification of the immune
system to allow invasion, proliferation, and
migration of tumor cells and trophoblasts.5 It
is possible that an organ systemelevel view of
the process of placentation as well as melanoma
progression could yield additional insights into
potential therapeutic targets for hormone-
based immune modulation.8
Mayo Clin Proc. n April 2014
www.mayoclinicproceedings.org n
The complexities and redundancies involved
in orchestration of thematernal response to preg-
nancy as well as the host response to cancer are
increasingly appreciated.4,9 Importantly, how-
ever, we and others have observed that neither
pregnancy nor advanced cancers are static immu-
nologic events.10-12 Oscillations in systemic im-
munity between inflammation and tolerance
seen in patients with metastatic melanoma have
been documented and seem to follow a biologi-
cally predictable pattern. When tolerance seen
in malignant melanoma is disrupted and brought
back to a state of inflammation, patients have a
much better prognosis than do those whose im-
mune systems stay in an immunologically
exhausted state. Pregnancy is also characterized
by many hormonal fluctuations, although the
time scale for these hormonal and immunologic
changes may be measured in weeks as opposed
to days13 (Figure 1) Although it seems intuitive
to consider the involvement of sex hormones
interacting with the maternal immune system
during pregnancy, it is less obvious but just as
possible that such hormones alter systemic
;89(4):520-535 n http://dx.doi.org/10.1016/j.mayocp.2014.01.006
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FIGURE 1. Hormonal changes (in weeks) important for the regulation of
gestation in healthy pregnant women. CRH ¼ corticotropin-releasing
hormone; hCG ¼ human chorionic gonadotropin.

ARTICLE HIGHLIGHTS

n Systemic immunity in metastatic melanoma (cancer) mimics the
systemic immune response of early pregnancy.

n Sex hormones promote/suppress different T cell responses
during pregnancy and in melanoma.

n Metastatic melanoma and early pregnancy promote a systemic
state of Th2 dominant chronic inflammation.

n Near parturition, hormones play a role in the return to cyto-
toxicity (Th1) of maternal immunity and the promotion of labor.

n Understanding the mechanism that causes immunity to switch
from Th2 to Th1 in pregnancy may help researchers better
understand how to break tolerance and improve patient out-
comes in advanced cancers.

MODULATION BY SEX HORMONES
immunity in the setting of cancers such as mela-
noma. We describe the observations and experi-
mental evidence supporting such involvement in
the following sections.

CLINICAL EVIDENCE OF HORMONAL
REGULATION OF MELANOMA
The skin is capable of producing many neuroen-
docrine mediators such as melanin, steroids,
thyroid hormones, and sex hormones such as
androgen, estrogen, and progestin to maintain
homeostasis; any failure to communicate be-
tween the skin, endocrine, and immune system
could result in deregulation and disease.14,15

Both melanocytes and melanoma tumors pro-
duce pigment in the melanosome that protects
the skin against damaging ultraviolet rays
through positive regulation by hormones such
as L-tyrosine and L-dihydroxyphenylala-
nine.16,17 Although the interplay between sex
hormones and the immune system inmelanoma
remains poorly understood, several clinical ob-
servations support the role of sex hormones in
melanoma development. Melanomas that are
responsive to estrogens are associated with the
superficial spreading melanoma subtype, a
type of tumor with a much better prognosis.
In addition, estrogen exerts a proliferative effect
onmelanocytes and can lead to the development
of hyperpigmentation in women using oral con-
traceptives or hormonal replacement therapy.18

Whether hormonal contraceptives increase the
risk of melanoma is a matter of ongoing debate.
Koomen et al19 have reported that high levels of
estrogens increase a woman’s risk for developing
malignant melanoma, while Lens and Bataille20

have not observed a relevant association. It
may be no coincidence that melanoma is the
most common form of cancer associated with
pregnancy.21 This is believed to be due to the
trophoblasts’ increased need for lymphangio-
genesis, which the melanoma then uses to pro-
mote its own growth. Complementary to this
hypothesis, demographic characteristics and
incidence may also provide an explanation as
to this phenomenon. In addition, pregnant
women are more likely than their nonpregnant
counterparts to be diagnosed with an invasive
melanoma.

We have shown that aging in healthy individ-
uals is associated with a TH2 bias.22 Women are
more likely than men to develop melanoma
before age 40, after which the diagnosis of
Mayo Clin Proc. n April 2014;89(4):520-535 n http://dx.doi.org/10.1
www.mayoclinicproceedings.org
melanoma is observed at a much higher rate in
men.23 However, women diagnosed with mela-
noma have a better prognosis than do men, and
premenopausal women have higher survival rates
than do postmenopausal women.24,25 Interest-
ingly, melanoma metastasizes at a much slower
rate in women than in men, and the pattern of
metastatic spread is also different, with more
016/j.mayocp.2014.01.006 521
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locoregional recurrencesobserved inwomen.26,27

Still, reasons behind these sex differences are yet
to be elucidated. With an extensive amount of
emerging data demonstrating the importance of
sex hormones in immune function, in the
remainder of the review we explore the mecha-
nisms behind endocrine sex hormoneemediated
immunomodulation. First, we highlight the po-
tential involvement of hormones in tumor pro-
motion, both via tolerance induction and as
chronic inflammation and angiogenesis. Next,
we describe hormones that may help improve
antitumor immunity. Finally, we briefly discuss
sexual dimorphism in immune responses,
which may have implications for the develop-
ment of personalized immunotherapy. A better
understanding of immunologic switches that
control tolerance, immune activation, and im-
mune reconstitution, all of which can be stud-
ied using the different phases of pregnancy as
amodel, and could result in novel immunologic
treatment strategies for melanoma and other
malignancies.
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PUTATIVE PROTUMOR/IMMUNE-
SUPPRESSIVE HORMONES: HUMAN
CHRONIC GONADOTROPIN, PROGESTER-
ONE, PLACENTAL GROWTH FACTOR, AND
RELAXIN

Human Chronic Gonadotropin
Soon after fertilization, the embryonic blasto-
cyst begins secreting human chronic gonado-
tropin (hCG). Human chronic gonadotropin is
a glycoprotein hormone primarily produced
by trophoblasts that promotes many processes
including implantation, recognition, differenti-
ation, angiogenesis, and fetal-maternal homeo-
stasis28 (Figure 2). Levels of hCG continue to
rise until the 11th week of gestation and then
slowly decrease through the remainder of the
pregnancy. The main purpose of hCG in preg-
nancy is to prevent degradation of the corpus
luteum and stimulate progesterone produc-
tion.29 Human chronic gonadotropin also
plays an important role in promoting immune
suppression in the decidua by preventing
Tumor initiation
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feron gamma; Treg ¼ regulatory T; uNK ¼ uterine
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;89(4):520-535 n http://dx.doi.org/10.1016/j.mayocp.2014.01.006
www.mayoclinicproceedings.org

http://dx.doi.org/10.1016/j.mayocp.2014.01.006
http://www.mayoclinicproceedings.org


MODULATION BY SEX HORMONES
maternal macrophage phagocytosis to the
invading trophoblast to establish immune toler-
ance.30 The early trophoblast promotes fetal
tolerance by secreting hCG, which acts as a
powerful chemoattractant for regulatory T
(Treg) cells to migrate to the placenta after fertil-
ization.31 Treg cells play an important role in
maintaining self-tolerance and modulating
tolerance to nonself antigen, such as those dis-
played by the fetus. Expression of complement
component 3 was found to be up-regulated by
hCG on stromal cells of the baboon endome-
trium postovulation, suggesting that hCG is
also able to modulate the decidual environment
during the preimplantation stage.32,33

Human chronic gonadotropin also regulates
uterine natural killer (uNK) cells.34 This uNK
cell subset makes up approximately 70% of
the lymphocyte population in the endometrium
and plays an important role in maintaining and
regulating the uterine spiral arteries during the
first trimester.35 Uterine natural killer cells stim-
ulate decidual monocytes to secrete interferon
gamma (IFN-g), promoting Treg-cell prolifera-
tion through indoleamine 2,3-dioxygenase and
transforming growth factor beta.36 Interestingly,
we have found uNK cells in the blood of patients
with stage IV melanoma and they also positively
correlated with transforming growth factor beta
levels in plasma.37 Human chronic gonado-
tropin drives a systemic response during preg-
nancy. Before in vitro fertilization, women
given hCG had increased levels of anti-
inflammatory IL-27 and IL-10 and reduced
levels of pro-inflammatory IL-17, which re-
sulted in an increase in the number of Treg cells
and a more receptive uterine wall for implanta-
tion.38 They also notice that hCG affected the
maternal adaptive immune system, promoting
a TH2-differentiated state by activating T cells
that produce IL-4 while inhibiting T cells that
secrete IFN-g.38

In addition, the formation of new blood
vessels is also driven by hCG, which acts on
proangiogenic molecules such as vascular
endothelial growth factor (VEGF) receptor 1
and angiopoietins.39 Soluble VEGF-C aids
in immune tolerance by suppressing the cyto-
toxic activity of uNK cells at the fetal-maternal
interface.40 Human chronic gonadotropin
enhances VEGF production by endometrial
cells through paracrine feedback, further pro-
moting blood vessel formation to the fetus.41
Mayo Clin Proc. n April 2014;89(4):520-535 n http://dx.doi.org/10.1
www.mayoclinicproceedings.org
IL-10, an inhibitor of inflammatory cytokines
that is found at high levels near the beginning
of pregnancy, induces the trophoblast to pro-
duce VEGF-C and stimulate placental angio-
genesis.42 Also, endocrine glandederived
VEGF has been implicated as a negative regu-
lator of trophoblast invasion in the placenta, as
high levels of endocrine glandederived VEGF
are seen in preeclampsia, and has recently been
hypothesized to be regulated by hCG.43 Human
chronic gonadotropin prevents apoptosis of
endometrial cells though the Fas-FasL pathway,
which, in turn, drives maternal tolerance during
early pregnancy.44

Human chronic gonadotropin plays very
similar roles in the invasion and progression of
cancer (melanoma). The hCG receptor was first
discovered in trophoblastic neoplasms, which
suggested that it has an important role in regu-
lating growth and invasion not only in preg-
nancy but in cancer as well.45 Several studies
have found that many cancers, including
bladder cancer, cervical cancer, lung cancer,
pancreatic cancer, and colorectal cancer, can
be diagnosed by high levels of hCG in the
serum.46,47 Human chronic gonadotropin
mRNA has also been expressed in tumor cells
from patients diagnosed with malignant mela-
noma and has been suggested for use as a
biomarker for disease.48 Others have shown
that up to 60% of active neoplasia will express
high levels of hCG in serum.49 Antibodies
against hCG have been detected during malig-
nancy, but hCG levels are so high that the effect
of these antibodies seems to beminimal, thereby
allowing hCG to act as an autocrine growth fac-
tor to promote malignancy.50 Tumor secretion
of hCG prevents apoptosis, allowing the cancer
to become more resistant and aggressive.51 As
a potent angiogenic factor, hCG secreted by
the tumor stimulates sprout formation through
vasodilation, maturation, and increased vessel
permeability, thus promoting tumor growth.52

Progesterone
Initial production of progesterone in pregnancy is
induced by hCG. Progesterone secretion by the
placenta continues to increase throughout preg-
nancy, only slightly decreasing approximately 4
weeks before labor onset. Progesterone is a potent
immunomodulator that establishes TH2 bias
in pregnancy by reducing the production of
pro-inflammatory cytokines by macrophages in
016/j.mayocp.2014.01.006 523
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response to infectious stimuli, and altering cyto-
kine secretion of T-cell subsets toward IL-10 pro-
duction53 (Figures 2 and 3). Furthermore, it
induces secretion of chemokines such as
CXCL10, CX3CL1, and CCL2 that localize
TH2-biased immune cells to the placenta and
up-regulates nonclassical human leukocyte anti-
gen-G.54 Interestingly, most progesterone recep-
tor (PR)-expressing decidual T cells express a g/
d T-cell receptor.55 This limits the number of li-
gands the T-cell receptor can recognize, which
provides protection to the growing fetus. These
T cells are also believed to be able to identify an-
tigens presented by trophoblasts.56 The PR comes
in 2 main isoforms, PR-A and PR-B, which
compete with one another for progesterone bind-
ing.57 Progesterone receptor-B is expressed on
myometrial cells during most of pregnancy and
inhibits the expression of pro-inflammatory
genes; however, PR-A is expressed during labor
and it in turn promotes pro-inflammatory gene
activation.58 Progesterone receptor-A overexpres-
sion at the end of pregnancy also promotes the
Mayo Clin Proc. n April 2014
activation of estrogen by increasing the expres-
sion of estrogen receptor (ER) a.59 A smaller, sol-
uble PR isoform, PR-C, has been found to
compete specifically with PR-B for progesterone
binding, by binding directly to progesterone
and inhibiting PR-B signaling near parturition,
thereby promoting labor-associatedmyometrium
changes and activating pro-inflammatory
pathways.60

The immune effects of progesterone are
exerted by inhibition of pro-inflammatory tran-
scription factor nuclear factor kappa B (NF-kB)
through IkB kinase.61 Effects of progesterone
are also mediated by progesterone-induced
blocking factor, which is expressed on lympho-
cytes in the decidua and is important in main-
taining pregnancy. Women who suffer from
spontaneous miscarriages or have high stress
levels have been found to have low levels of
progesterone-induced blocking factor, which
was associated with pregnancy complications.62

Natural killer (NK) cells in pregnancy are very
sensitive to progesterone: low levels of
;89(4):520-535 n http://dx.doi.org/10.1016/j.mayocp.2014.01.006
www.mayoclinicproceedings.org
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progesterone are required to achieve inhibition,
compared with 100-fold higher levels needed
to achieve similar NK-cell inhibition in non-
pregnant individuals.63 Inmice, progesterone ac-
tivates a TH2-biased immune response by
inhibiting maturation of dendritic cells (DCs),
which would more readily initiate a TH1
response through the promotion of cytotoxic
T-cell expansion.64

In cancer, progesterone modulates immune
responses by inhibiting T-cell proliferation65

and IFN-g expression66 while enhancing IL-4,
IL-5, IL-6, and IL-10 production and promoting
ahumoral response.67 Interestingly, humanmela-
nocytes canproduce steroidsdenovo through the
metabolism of progesterone or cholesterol.68-70

Progesterone has been shown to inhibit the prolif-
eration of human melanocytes by blocking the
effects of estrogen.71 The PR has been identified
in the cytoplasm and nucleus of melanocytes by
immunohistochemistry.72 Melanoma cells that
do not express the PR were still found to be regu-
lated in the presence of progesterone, but are
modulated through signal transduction versus
transcription.73 Progesterone-induced blocking
factor has been suggested to play a role in cell
cycle regulation and TH2-biased immunity
through the IL-4 receptor.74 Progesterone-
induced blocking factor mRNA is constitutively
expressed in tumor cells and does not require
the presence of the PR, which provides a mecha-
nism for cancer to escape antitumor immune re-
sponses.56 In vitro experiments using WM266-4
cells found that progesterone, estradiol 17b and
dihydrotestosterone given together can inhibit tu-
mor growth through the down-regulation of IL-8,
which is a potent cytokine for inducing mela-
noma cell growth.75

Placental Growth Factor
We have previously described a VEGF-driven
state of chronic inflammation in metastatic mel-
anoma.76 Placental growth factor (PlGF), a VEGF
homologue, may play a similar role in perpetu-
ating chronic inflammation. It plays a consider-
able role in embryogenesis, promoting both
angiogenesis and vascularization to the fetus dur-
ing inflammation.77 It was discovered that Flt-1,
a VEGF receptor, binds PlGF and mediates
recruitment of monocytes.78 Peripheral blood
monocytes treated with PlGF showed increased
expression of pro-inflammatory cytokines IL-
1b and tumor necrosis factor alpha (TNF-a),
Mayo Clin Proc. n April 2014;89(4):520-535 n http://dx.doi.org/10.1
www.mayoclinicproceedings.org
and chemokines monocyte chemoattractant
protein, IL-8, and macrophage inflammatory
protein, suggesting that PlGF plays an important
role in inducing inflammation.79 Melanocytes
and melanoma tumors are also known to secrete
PlGF, which makes them weakly responsive to
anti-VEGF therapy.80 However, when PlGF
was neutralized, even in tumors resistant to
anti-VEGF therapy, the tumor could no longer
signal through vascular endothelial growth factor
receptor-1, inhibiting growth during a preclinical
study.81 Therefore, it has been hypothesized that
PlGF plays an important role in allowing a tumor
to become drug resistant.82,83 Further studies
need to be conducted to fully understand PlGF’s
role in inflammation and tumor progression.
Relaxin
The role of relaxin in pregnancy (induction of
matrix metalloproteinases, extracellular matrix
remodeling, labor), as well as induction of
pro-inflammatory cytokines IL-6 and IL-8,
has been well documented in rhesus mon-
keys.84 Although relaxin has not been studied
in melanoma to date, its role in carcinogenesis
of breast and prostate cancer has been well
established. Relaxin was implicated in tumor
growth, cell invasion during pregnancy, and
likely tumor invasion in carcinogenesis as
well as in angiogenesis by the induction of
VEGF.85-87 Whether relaxin plays a role in mel-
anoma development remains to be elucidated.
PUTATIVE ANTITUMOR/PRO-
INFLAMMATORY HORMONES:
CORTICOTROPIN-RELEASING HORMONE,
PROLACTIN, AND VISFATIN

Corticotropin-Releasing Hormone
Corticotropin-releasing hormone (CRH) has
been postulated to regulate the duration of gesta-
tion, with its levels being the highest during labor
(Figure 4). Itworks directly onmyometrial cells to
facilitate the onset of labor, and it is tightly regu-
lated by progesterone, estrogens, nitric oxide,
IL-1b, andTNF-a.60Corticotropin-releasinghor-
mone binding protein binds CRH and inactivates
its ability to promote corticotropin production.88

Corticotropin-releasinghormonebindingprotein
levels decrease throughout pregnancy, allowing
high levels of CRH to accumulate andpromote la-
bor. Other actions of CRH include regulation of
016/j.mayocp.2014.01.006 525
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fetal blood flow, placental prostaglandin and
cortisol production, and uterine contractility.89

Corticotropin-releasing hormone regulates
the hypothalamic-pituitary-adrenal (HPA) axis,
which allows cells to respond to environmental
stresses.90 Melanocytes are known to secrete
CRH, which permits them to produce cortisol
and corticotropin to maintain skin homeosta-
sis.91 In cell culture, melanoma cells treated
with CRH migrated further during stress,
which was determined to be mediated by the
extracellular signal-regulated kinase (ERK1/2)
pathway.92 Increases in the levels of CRH and
proopiomelanocortin are strongly associated
with malignant melanoma.93 Another function
of CRH in the skin is to act as a growth regulator
by both promoting and suppressing cell prolifer-
ation. Corticotropin-releasing hormone recep-
tor 1 controls the action of CRH and can
promote cyclic adenosine monophosphate and
Mayo Clin Proc. n April 2014
inositol trisphosphate synthesis in dermal and
epidermal cells.94 Melanomas exclusively ex-
press corticotropin-releasing hormone receptor
1, which plays an important role in proliferation
and has become an agonist target.95 In a B16
mouse melanoma model, daily injections with
CRH reduced tumor volume by 30% to 60%
compared with that in control animals.96

Research shows that CRH promotes the survival
of melanocytes during starvation and prevents
cell proliferation by inhibiting growth factor
signaling through cyclic adenosine monophos-
phate and IP3 second messengers.97 Tumor ne-
crosis factor alpha, IL-1, and IL-6 stimulate the
HPA axis to produce CRH, which drives a pro-
inflammatory, TH1-biased response.98 When
peripheral CRH acts on the HPA axis in the
brain, it triggers a classical feedback mecha-
nism that leads to the secretion of cortisol,
a steroid hormone with anti-inflammatory
;89(4):520-535 n http://dx.doi.org/10.1016/j.mayocp.2014.01.006
www.mayoclinicproceedings.org
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effects.99 Thus, CRH is a potential modulator
of a TH1-biased response and its role should
be further studied in cancer.

Prolactin
Prolactin (PRL) is a polypeptide hormone
secreted by the syncytiotrophoblast that reaches
its highest levels during late pregnancy
(Figure 4). It acts on corpus luteum cells in the
ovary to stimulate the secretion of progesterone
to maintain pregnancy and on epithelial cells of
the mammary gland to initiate milk produc-
tion.100 The amount of PRL secreted is directly
proportional to the size of the fetus, and it func-
tions to provide energy for themother andnutri-
ents for the fetus. Through lipolysis and anti-
insulin effects of PRLaction, thematernal insulin
level increases, providing free fatty acids and
amino acids to the growing fetus.101 Prolactin
functions to increase b-islet cell proliferation,
inhibit apoptosis, and cause b-islet cells to
become more responsive to glucose.102 Gluco-
corticoid expression of Rasd1 near the end of
gestation changes insulin secretion during preg-
nancy through the inhibitory effects of PRL on
Rasd1 transcription.103 Activation of dopamine
neurons suppresses PRL secretion through
placental lactogens.104 The N-terminal 16K
PRL fragment had been determined to stop pro-
liferation and migration of vascular endothelial
cells and cause cell cycle arrest resulting in
apoptosis.105 High levels of 16K human PRL
can be detected in serum and urine of women
suffering from preeclampsia.106

In melanoma, PRL drives TH1-biased immu-
nity through the secretion of IL-1, IL-6, IL-10,
IL-12, and IFN-g by NK cells and B lympho-
cytes,107,108 and plasma cell activation.109 It
increases T-cell proliferation110 and decreases
B-cell apoptosis.111 Through animal studies,
PRL’s antitumor effect has been shown to pro-
mote tumor-specific macrophages through
IFN-g and IL-12, and CT26 tumor-bearing
mice injected with recombinant human PRL
and IL-15 had enhanced cytotoxic activity to
the tumor, resulting in fewer lung metastasis
and longer overall survival (OS).112,113 However,
PRL does not have an antitumor effect in all can-
cers. In breast cancer, high levels of PRL are asso-
ciated with a greater risk for developing
cancerous ERaþ tumors and is associated with
much poorer outcomes for patients with these
increased levels.114 This is likely because PRL
Mayo Clin Proc. n April 2014;89(4):520-535 n http://dx.doi.org/10.1
www.mayoclinicproceedings.org
promotes mammary tumorigenesis independent
of cyclin D1 activation.115 This has not yet been
observed in melanoma. Pro-inflammatory cyto-
kines such as IL-1, IL-2, and IL-6 produced by
bothpituitary and extrapituitary cells have a stim-
ulatory effect on PRL secretion, while IFN-g in-
hibits its production.116 Many immune cells
express the PRL receptor including monocytes,
macrophages, B and T cells, granulocytes, and
NK cells.117 Prolactin secretion from the anterior
pituitary gland is inhibited by the dopamine D2
receptor, which is widely expressed on mela-
noma cells and plays a key role in inhibiting
adenylyl cyclase, which is necessary for cellular
signal transduction.118,119 Prolactin also en-
hances the effect of immune cells, including
CD34þ stem cells, in the blood through the up-
regulation of major histocompatibility complex
class II expression on antigen-presenting cells,
T-cell clonal expansion, antibody production,
increased cytotoxicity of NK cells, and microbe
killing by macrophages.120 In mouse melanoma
models, 16K human PRL can block angiogenesis
and inhibit tumor growth by activating NF-kB,
causing tumor-infiltrating lymphocytes to access
and destroy cancer cells.121 This PRL peptide
endogenously blocks Notch signaling, which
greatly impairs the tumor’s ability to vascular-
ize.122 16K human PRL has also been shown to
block angiogenesis through the inhibition of
basic fibroblast growth factor and VEGF, making
it a target for antitumor therapies.123 Thus, better
understanding of how PRL can promote cell-
mediated immunity could help researchers
design better ways to initiate tumor destruction.

Visfatin
Previously known as preeB-cell colony-
enhancing factor or nicotinamide phosphoribo-
syltransferase, visfatin is a visceral fat cytokine
with an important role in the promotion of
inflammation.124-126 Visfatin levels are highest
at the end of gestation and promote the secre-
tion of IL-1b, IL-6, IL-8, cyclooxygenase 2,
TNF-a, and prostaglandin E2.

127,128 Interest-
ingly, infection-associated preterm labor is
concomitant with elevated levels of visfatin in
maternal plasma.129 These findings suggest
that visfatin could be important for immune
resolution back to a TH1 state. However, the
role of visfatin in melanoma is poorly under-
stood. It appears that visfatin is more highly
expressed in melanoma lesions than in benign
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lesions.130 Moreover, it seems that visfatin
may promote melanoma cell growth in vitro.
Namely, a study131 using the melanoma
Me45 cell line reported that visfatin increased
the proliferation of these tumor cells. In
another study,132 neutrophils have been found
to synthesize visfatin in response to inflamma-
tory stimulus and inhibit apoptosis in vitro and
in patients with sepsis. Thus, it remains
possible that there could be an additional reg-
ulatory level of visfatin during pregnancy,
which might be lost during tumorigenesis,
and thereby promotes melanoma proliferation,
but more studies need to be conducted to
elucidate the role of visfatin in melanoma.

ESTROGEN: A DOUBLE-EDGED SWORD
MODULATING TH1/TH2 IMMUNITY
Women have high levels of estrogen, which drop
dramatically when they reachmenopause. Estro-
gen modulates the immune response by
inducing peripheral T cells to secrete pro-
inflammatory cytokines IFN-g and IL-2,133 but
also promotes tolerance by inducing IL-10 secre-
tion134 (Figures 3 and 4). Estradiol-17b (E2) at
high concentrations induces a TH1 response,
whereas at low concentrations it biases the
system toward immune tolerance.135 Pro-
inflammatory responses are regulated by E2
throughNF-kB. However, estrone (E3) is detect-
able only in pregnant women because it is pro-
duced by the placenta and fetus. Estrone is
important for reducing the production of pro-
inflammatory cytokines in circulation by
decreasing IkB degradation, which inhibits NF-
kB activation and apoptosis (Figure 3).136 Estro-
gens work through interaction with the ER to
induce transcriptional regulation. Immune cells
including DCs, NK cells, macrophages, and lym-
phocytes express ERs, signifying that this hor-
mone modulates their function.137 Indeed, the
differentiation of DCs is regulated by E2 acting
on ERa. Levels of E2 are the highest during the
third trimester, when the number of immature
DCs is high and actively presenting fetal antigen
to the mother’s immune system to begin la-
bor.138 Complement component 3, a protein
that plays a central role in inducing inflammation
in innate immunity, is increased by estrogen in
oviductal epithelial cells.139 Angiogenesis in the
uterus is also driven by estrogen. Vascular endo-
thelial growth factor mRNA levels increase in the
endometrium in the presence of E2.140 This
Mayo Clin Proc. n April 2014
increases placental blood flow and vasodilation,
which are both characteristic of angiogenesis.
Cytotrophoblasts, but not syncytiotrophoblasts,
stimulate VEGF production directly, and this
production is correlated to the levels of E2 in
the serum.141 Thus, estrogen stimulates VEGF
production and blood vessel formation, which
is essential for the establishment and mainte-
nance of the fetus during pregnancy.

Women at risk for familial breast cancer
have increased risk for developing melanoma
and vice versa, suggesting that estrogens can
promote tumorigenesis.142 It has been known
for many years that melanoma tumor cells
express ERs.143 Estrogens affect lymphocytes
by initiating the secretion of IL-10, IL-12, and
IFN-g and inhibition of TNF-a,144 stimulation
of antibody production,145 and the reduction
of macrophage and DC apoptosis.146,147 Estra-
diol-17b has been proven to inhibit melanoma
growth by obstructing receptor binding of
IL-8.75 Chronic exposure to estrogens was
suggested to increase NF-kB stimulation and
induce pro-inflammatory responses by macro-
phages.148 It has been shown that short-term
and long-term inflammation leads to the up-
regulation of ERa, but not ERb, thus affecting
the effects of estrogens on T cells, because T cells
express ERa, while B cells express ERb.149 It was
also reported that estrogen decreases apoptosis,
as well as TNF-a production.150 Estradiol-17b
and estrone both have a strong affinity for bind-
ing ERa,151 which is why ERa is commonly
associated with tumor promotion. Yet, ERb
has been found on malignant melanoma cells
that are negative for ERa.152 Loss of ERb expres-
sion correlated with increased invasiveness of
the tumor,153 suggesting that loss of ERb expres-
sion increases malignant transformation in mel-
anoma. The most important prognostic factors
in melanoma are tumor thickness (Breslow
depth) and invasive level (Clark level); as each
increase, the patient’s prognosis decreases.154

Interestingly, increased ERb expression is not
found on nonmalignant cells surrounding the
tumor, only on the tumor cells themselves.155

Another role of ERb is regulation of monocyte
apoptosis through the Fas-FasL signaling
pathway.156 It has been shown that myeloid
progenitor cells exposed to the granulocyte-
macrophage colony-stimulating factor differen-
tiate into immature DCs through the expression
of ERa and increased levels of estrogens.157,158
;89(4):520-535 n http://dx.doi.org/10.1016/j.mayocp.2014.01.006
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Recently, 2-methoxyestradiol, an estrogen deriv-
ative, has been determined to be a potent inhib-
itor of angiogenesis and melanoma growth in a
mouse model.159 Taken together, this indicates
that estrogens can both promote and hinder tu-
mor growth and monitoring ER expression
could help clinicians determine the patient prog-
nosis to the disease.

SEXUAL DIMORPHISM IN RESPONSE TO
HORMONES
In this review, we have discussed existing
data supporting a role for sex hormones and
their ability to manipulate the immune sys-
tem in both pregnancy and melanoma.
Beyond these observations, several studies
have identified sexual dimorphism with
respect to inflammatory responses in various
settings. For example, sex-based differences
in vascular function have been described
and show the development of early athero-
sclerotic lesions and plaques with increased
production of inflammatory mediators
(IL-10 and TNF-a) in women than in
men.160-162 That the state of pregnancy, and
not a general state of tolerance in women, ac-
counts for additional sex-based differences in
immune function is supported by the fact that
autoimmune diseases are more prevalent in
women.163 Moreover, autoimmune diseases
such as rheumatoid arthritis and systemic
lupus erythematous are diagnosed more
frequently in women and are strongly corre-
lated with sex hormones.164,165 Interestingly,
some autoimmune diseases such as arthritis
remit with pregnancy, but systemic lupus
erythematous has been found to often worsen
in severity during gestation.164 Women also
exhibit enhanced innate immune responses
to infections,166,167 not blunted ones, and
survive episodes of severe sepsis to a greater
degree than do men.168 It is clear that sex
plays a role in risk, severity, and prognosis
of many diseases, including cancer, and
research in this area has just begun. It may
one day become important to consider the
sex of the patient with cancer when personal-
izing cancer immunotherapies.

REVERSING TOLERANCE IN MELANOMA
To positively affect survival of patients with
cancer, it appears critical to find a way to break
immune tolerance to the malignancy. Insights
Mayo Clin Proc. n April 2014;89(4):520-535 n http://dx.doi.org/10.1
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into achieving this goal in metastatic mela-
noma may lie in well-recognized abnormalities
of pregnancy (eg, spontaneous abortions). For
example, serum taken from women suffering
from recurrent spontaneous abortion have a
cytokine profile indicative of a TH1 response
compared with healthy pregnant women.169

To counter this, intravenous immunoglobin
given to women, with reported previous recur-
rent miscarriages and/or suffering from recur-
rent miscarriages after in vitro fertilization,
every 3 to 4 weeks starting from conception
or 24 hours before embryo transfer showed a
decrease in the number of NK cells and an im-
plantation success rate of 92.5% compared
with 25% for women not receiving intravenous
immunoglobin.170 Moreover, new immuno-
therapies for promoting tolerance to the fetus
during gestation are being studied in animal
models and could have important implications
in melanoma. In mice, researchers have shown
that blocking CD80 and CD86 enhances
maternal tolerance, decreasing implantation
failure through the increase in Treg cells and
development of TH2 cells.171 The use of antie
cytotoxic T lymphocyte antigen 4 (CTLA4)
antibody therapy with CD80/CD86 blockade
has been found to regulate the TH2/TH1 bal-
ance in peripheral blood monocytes isolated
fromwomen with recurrent spontaneous abor-
tion, which led to the design of an adenoviral
CTLA4 antibody that improved pregnancy
outcomes in a mouse model of spontaneous
abortion.172,173

The opposite, immune-activating effect is
desired in metastatic melanoma. Recent Food
and Drug Administration approval of the anti-
CTLA4 antibody, ipilimumab, was meant to
initiate T-cell activation and tumor destruction
by promoting cytotoxic capacity of naturally
occurring tumor-specific T cells, thereby over-
coming, in part, their state of immune toler-
ance.174 Patients with metastatic melanoma
treated with ipilimumab given alone or in combi-
nationwith a peptide vaccine (gp100) exhibited a
median overall survival OS time of approximately
10 months, an improvement over the 6.4-month
OS observed in patients receiving gp100 vaccine
alone.175 As breakthrough as this drug is, it
comes at a cost of significant immune-related
adverse events in up to 15% of the patients.176

Another new and promising antibody targets
program death 1 (PD-1), an additional receptor
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found on activated cells that is critical for im-
mune regulation, which has been shown to pro-
mote a pro-inflammatory environment by IFN-g
and IL-2 secretion.177 In clinical trials, this drug,
after treatment with or without the anti-CTLA
inhibitor, showed a high rate of sustained tumor
regression and a median OS of 11months in pa-
tients with metastatic melanoma.178 This led to
administering both ipilimumab and nivolumab
(antiePD-1) concurrently, resulting in 53% of
the patients obtaining an 80% reduction in tu-
mor volume.179 Unfortunately, the reported in-
crease in objective response rate was paralleled
with a similar increase in severe toxicity. Other
promising immunotherapies for patients with
melanoma are also being studied. Antitumor
immunity has been shown by using an anti-
body to CCR4, a marker found on immune-
suppressive Treg cells, which when given to a
patient with T-cell leukemia-lymphoma re-
sulted in a CD8þ T-cell response to the
tumor.180 Human epidermal growth factor re-
ceptor 2, an antibody commonly used to treat
breast cancers, has recently shown positive
effects on a number of melanoma cell lines
and xenograft models.181 Bevacizumab, an
anti-VEGF antibody, given to patients with
metastatic melanoma in combination with
albumin-bound paclitaxel and carboplatin,
resulted in an increase in CD8þ lymphocytes
but did not affect the TH1/TH2 ratio.182

Even though promising, the clinical suc-
cesses of present day immunotherapeutic stra-
tegies for metastatic cancer fall short of their
preclinical results. Many share the belief that
the reason for this discrepancy in clinical
translation is the result of tumor-driven im-
mune tolerance of human cancer.183 Another
reason for this discrepancy is that malignant
melanocytes use melanogenesis, which is a
normal metabolic process that generates a local
immunosuppressive environment through
proopiomelanocortin-derived peptides and
steroids.17 It was discovered that inhibiting
melanogenesis increases the potency of the
immune system and chemotherapy against tu-
mors.184 Overcoming the tumor-induced
modulation of systemic immunity to recover
the ability of endogenously generated immune
cells to effectively destroy the malignancy
will be a considerable challenge. An interesting
concept in pregnancy, which could lead to
better understanding of malignancy, is the
Mayo Clin Proc. n April 2014
spontaneous return to cytotoxicity near the
end of parturition.138 Near parturition, an un-
known event results in the reactivation of TH1
maternal immunity and the initiation of labor
(rejection). Characterizing this phenomenon
by further studying the role that cytokines,
cells, and hormones play could translate into
different methods for breaking tolerance in pa-
tients with cancer, which could ultimately
improve therapeutic efficacy and OS. The
skin is a steroidogenic organ; it synthesizes
its own steroids and sex hormones and can
regulate local immune activities along with
affecting the function of the epidermis.185

Corticotrophin-releasing hormone has been
found to block human melanoma cell prolifer-
ation in vitro97 and could provide additional
therapeutic value when paired with a targeted
agent. As progesterone promotes a tolerant
state in pregnancy, treating a stable melanoma
patient with progesterone was found to cause
proliferation of dormant micrometastases by
tipping the immune system back to a TH2
state.186 B7-H1 (PD-L1) is a molecule
expressed on antigen-presenting cells and con-
tributes to tumor evasion and expansion of
Treg cells.187,188 In a B7-H1 knockout mouse
model of melanoma, it was discovered that fe-
males had superior tumor growth resistance
than did males due to estrogen-mediated sup-
pression of Treg cells.189 Clinically, in a phase
I study of advanced cancers, including mela-
noma, patients treated with the PD-1 antibody
reported a marked response rate (28%) that
was durable in only those patients expressing
PD-L1, making it a potential biomarker for
antiePD-1 treatment response.190 However,
the authors did not compare men and women
to look at potential differences due to sex.
Altogether, to improve outcomes for patients
with melanoma treated with immunothera-
peutics, we must more completely understand
the process of normal pregnancy immunoreg-
ulation, specifically the return to cytotoxicity
(TH1 bias) at the end of gestation.

CONCLUSION
The dynamic maternal immune responses to
normal pregnancy have evolved out of the
need to support a semiallogenic fetus over the
duration of the pregnancy, without relevant in-
fectious or inflammatory impediment to the
mother. In turn, the maternal immune system
;89(4):520-535 n http://dx.doi.org/10.1016/j.mayocp.2014.01.006
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is tightly regulated by hormone release and cyto-
kine action to protect the developing fetus. Can-
cers, including melanoma, appear to induce
similar tolerogenic immune programs through
various mechanisms, including paracrine secre-
tion of sex hormones, to drive angiogenesis
required for oxygen and nutrient supply, all
the while evading immune attack in a manner
similar to the process of placentation. A better
understanding of the molecular switches
involved in the induction and reversal of im-
mune tolerance in the setting of pregnancy
may help identify new methods for targeted im-
mune modulation for patients with melanoma.
Abbreviations and Acronyms: CRH = corticotropin-
releasing hormone; CTLA4 = cytotoxic T lymphocyte antigen
4; IFN-g = interferon gamma; DC = dendritic cell; E2 =
estradiol-17b; ER = estrogen receptor; hCG = human
chronic gonadotropin; HPA = hypothalamic-pituitary-ad-
renal; NF-kB = nuclear factor kappa B; NK = natural killer;
OS = overall survival; PD-1 = program death 1; PlGF =
placental growth factor; PR = progesterone receptor;
PRL = prolactin; TNF-a = tumor necrosis factor alpha;
Treg = regulatory T; uNK = uterine natural killer; VEGF =
vascular endothelial growth factor
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